

DESIGNING A SYNTHESIS REACTOR FACILITY

Mike Clucas
Group Head Process Engineering
DPS

THE PROJECT

FRAMING THE DESIGN

 A qualified, commercial scale fully automated Synthesis Facility

 The facility is based on using a modified Neutsche Filter / Dryer as a chemical synthesis reactor

 This project has delivered a successful novel approach for commercial scale manufacture of the product in a safe, fully automated multiproduct facility

Project Drivers

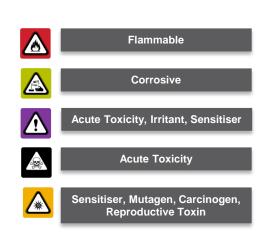
EHS

INDUSTRIALISE

THE SAFETY DRIVER NEW SYNTHESIS PLANT

Facility Safety

A Basis Of Safety Approach Having safety as a design driver



- Preliminary Hazard Analysis (PHA)
- HAZOP
- Containment
- Ergonomics
- ATEX Report and Drawings
- LOPA
- SIL

Basis of Safety

	CHEMICAL	HAZARD
Step 1	A B C	
	Е	
Step 2	Reagent A Reagent B	
	Reagent C	
Step 3	F	
	G	

Connecting Pharmaceutical Knowledge ispe.org

Powder Sampling & Liquid Handling

New Synthesis

Automated & contained vessel sampler

Contained powder transfers

New Synthesis

- Automated solvent transfer system
- Sophisticated instrumentation for accurate & repeatable transfers
- Fully contained charging

Facility Safety

A Basis Of Safety Approach Having safety as a design driver

- Fully Contained Charging, Bulk solvent and Liquid Waste Handling, Vent Header Design
- Recipe Controlled Vacuum swing Inertion and Collected, Abated Venting.
- Contained Potent Dispensing and Charging
- Fully contained, long term technically sealed solvent transfer and collection systems.
- Fully ATEX, PED and FM Global Compliance
- Relief Sizing to API520/521

THE INDUSTRIALISATION DRIVER NEW SYNTHESIS PLANT

Basis of Design

Design of a Synthesis Facility

Safe Process 280l batch reactor

1 week batch cycle time

Multiproduct and Fully Automated functionality

Consistent and increased yield

Early Design

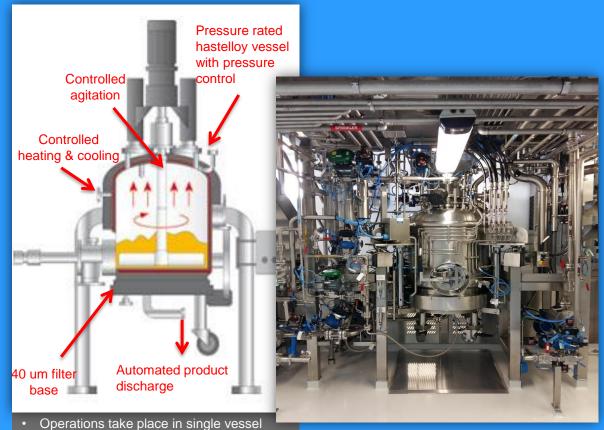
PDF's, Mass Balance and Batch Cycle calculation

Engagement with Facility team

Tech Transfer and Vendor **Trials**

Proof of Concept -Key process scale-up parameters

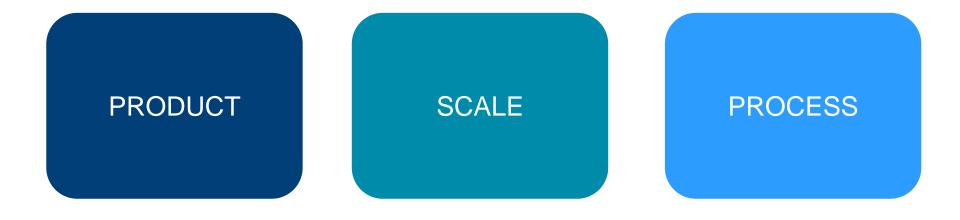
Equipment Selection -Neutsche Filter


THE REACTOR

NEW SYNTHESIS PLANT

Existing Synthesis

New Synthesis



- Automated CIP cycle
- Automated filter base lowering
- No lifting or manual handling required

Knowledge ispe.org Connecting **Pharmaceutical**

Reactor Requirements

Connecting Pharmaceutical Knowledge ispe.org

Reactor Selection

EQUIPMENT

DESIGN PARAMETERS

FLEXIBILITY

INNOVATION

THE NEW FACILITY

Connecting Pharmaceutical Knowledge ispe.org 19

Thank You

Stephen Judd , Lead Process Engineer
Mike Clucas, Group Head Process Engineering
www.dpsgroupglobal.com

